Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res ; 76: 103376, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452706

RESUMO

The ISL LIM homeobox 1 (ISL1) gene belongs to the LIM/homeodomain transcription factor family and plays a pivotal role in conveying multipotent and proliferative properties of cardiac precursor cells. Mutations in ISL1 are linked to congenital heart disease. To further explore ISL1's role in the human heart, we have created a homozygous ISL1 knockout (ISL1-KO) human embryonic stem cell line using the CRISPR/Cas9 system. Notably, this ISL1-KO cell line retains normal morphology, pluripotency, and karyotype. This resource serves as a valuable tool for investigating ISL1's function in cardiomyocyte differentiation.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Embrionárias Humanas , Humanos , Sistemas CRISPR-Cas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Linhagem Celular , Coração , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas com Homeodomínio LIM/genética
2.
Adv Healthc Mater ; : e2304432, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462702

RESUMO

Vascular diseases are the leading cause of ischemic necrosis in tissues and organs, necessitating using vascular grafts to restore blood supply. Currently, small vessels for coronary artery bypass grafts are unavailable in clinical settings. Decellularized small-diameter tissue-engineered vessel grafts (SD-TEVGs) hold significant potential. However, they face challenges, as simple implantation of decellularized SD-TEVGs in animals leads to thrombosis and calcification due to incomplete endothelialization. Consequently, research and development focus has shifted toward enhancing the endothelialization process of decellularized SD-TEVGs. This paper reviews preclinical studies involving decellularized SD-TEVGs, highlighting different strategies and their advantages and disadvantages for achieving rapid endothelialization of these vascular grafts. Methods are analyzed to improve the process while addressing potential shortcomings. This paper aims to contribute to the future commercial viability of decellularized SD-TEVGs.

3.
Stem Cell Res ; 77: 103384, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38479330

RESUMO

The T-box family transcription factor gene TBX20 plays a crucial role in cardiac development and function. TBX20 mutations are associated with congenital heart disease, dilated cardiomyopathy, arrhythmias, and heart failure. To further study the role of TBX20 in human heart, here we generated a homozygous TBX20 knockout (TBX20-KO) human embryonic stem cell line using the CRISPR/Cas9 system. This TBX20-KO cell line maintains normal morphology, pluripotency, and karyotype, making it a valuable tool for investigating TBX20's role in cardiac biology.

4.
Quant Imaging Med Surg ; 13(12): 7814-7827, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38106247

RESUMO

Background: This study used late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) to assess myocardial infarct size, with the data being employed to predict whether patients with ischemic cardiomyopathy (ICM) would experience improvements in left ventricular function at 6 months following coronary artery bypass grafting (CABG). Methods: The data of patients with ICM with left ventricular ejection fraction (LVEF) ≤40% who underwent CABG were retrospectively analyzed. All patients underwent preoperative LGE-CMR imaging. Echocardiography results from 6 months post-CABG were used to assess improvements in LVEF, with improvement being defined as ΔLVEF ≥5%. The value of myocardial infarction segments and infarct size as predictors of improved cardiac function following CABG was analyzed. Results: Of the included patients, 66.7% (52/78) exhibited improved cardiac function at 6 months post-CABG. LGE-CMR imaging data revealed that compared to improved group, the improved group had significantly more myocardial infarct segments [improved group: median 1.0, interquartile range (IQR) 0-3; nonimproved group: median 4.0, IQR 3.0-6.0; P<0.001] and significantly greater myocardial infarct size (improved group: 22.4%±8.2%; nonimproved group: 34.7%±5.9%; P<0.001). The area under the receive operating characteristic curve values for myocardial infarct size in predicting cardiac function improvement were significantly higher than those of myocardial infarct segments (0.88 vs. 0.81; P=0.041). The respective sensitivity and specificity values for using a myocardial infarct size cutoff of 26.4% in differentiating between these 2 patient groups were 92.3% and 71.2%, respectively. According to logistic regression analysis, myocardial infarct size was an independent predictor of nonimprovement in cardiac function [odds ratio (OR) =1.244; 95% confidence interval (CI): 1.114-1.389; P<0.001]. A median 1.6-year follow-up interval (range, 0.5-4.1 years) revealed that the incidences of major adverse cerebrovascular events and cardiovascular events were significantly higher in the nonimproved group (5.8% vs. 26.9%; P<0.001), with these individuals having a higher New York Heart Association grading than patients with improved cardiac function (P=0.019). Conclusions: Myocardial infarct size can be measured to reliably predict improvements in cardiac function in patients with ICM following CABG. These results can guide clinicians in their efforts to identify those patients most likely to achieve positive outcomes following CABG.

5.
Biomed Pharmacother ; 165: 115026, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336148

RESUMO

This study sought to investigate the anti-amyloid ß (Aß) and anti-neuroinflammatory effects of catalpol in an Alzheimer's disease (AD) mouse model. METHODS: The effects of catalpol on Aß formation were investigated by thioflavin T assay. The effect of catalpol on generating inflammatory cytokines from microglial cells and the cytotoxicity of microglial cells on HT22 hippocampal cells were assessed by real-time quantitative PCR, ELISA, redox reactions, and cell viability. APPswe/PS1ΔE9 mice were treated with catalpol, and their cognitive ability was investigated using the water maze and novel object recognition tests. Immunohistochemistry and immunofluorescence were used to probe for protein markers of microglia and astrocyte, Aß deposits, and NF-κB pathway activity. Aß peptides, neuroinflammation, and nitric oxide production were examined using ELISA and redox reactions. RESULTS: Catalpol potently inhibited Aß fibril and oligomer formation. In microglial cells stimulated by Aß, catalpol alleviated the expression of the proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and inducible nitric oxide synthase (iNOS) but promoted the expression of the anti-inflammatory cytokine IL-10. Catalpol alleviated the cytotoxic effects of Aß-exposed microglia on HT22 cells. Treatment with catalpol in APPswe/PS1ΔE9 mice downregulated neuroinflammation production, decreased Aß deposits in the brains and alleviated cognitive impairment. Catalpol treatment decreased the number of IBA-positive microglia and GFAP-positive astrocytes and their activities of the NF-κB pathway in the hippocampus of APPswe/PS1ΔE9 mice. CONCLUSION: The administration of catalpol protected neurons by preventing neuroinflammation and Aß deposits in an AD mouse model. Therefore, catalpol may be a promising strategy for treating AD.


Assuntos
Peptídeos beta-Amiloides , Disfunção Cognitiva , Medicamentos de Ervas Chinesas , Glucosídeos Iridoides , Doenças Neuroinflamatórias , Fármacos Neuroprotetores , Placa Amiloide , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Placa Amiloide/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Animais , Camundongos , Modelos Animais de Doenças , Citocinas/metabolismo , Linhagem Celular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos beta-Amiloides/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Masculino , Feminino , Camundongos Transgênicos
6.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770915

RESUMO

Msalais wine (MW) is a popular traditional wine with the cultural characteristics of a specific Chinese ethnic group. In this study, phenolic profiles and antioxidant characteristics were identified using chromatographic analysis. A total of thirty-eight compounds, including eight furans, eleven phenolic acids, fourteen flavonoids, and five others, were identified via LC-MS/QTOF. It was found that catechin is the most abundant phenolic compound in MW, followed by epicatechin, gallic acid, caffeic acid, rutin, and p-coumaric acid. Winemaking had a significant influence on the levels of phenols and antioxidant activity. Condensed juice (CJ) displayed the highest phenol and antioxidant activity levels, while the levels were significantly decreased during the fermentation process and gradually stabilized thereafter during the aging process. A correlation analysis between the polyphenols in Msalais and their antioxidant capacity was performed to determine which molecules contributed more to the antioxidant capacity in a complex mixture of polyphenols. All of the phenolic compounds, except ferulic acid, showed good correlation with DPPH, ABTS, and CUPRAC. Among them, resveratrol had the strongest antioxidant capacity, although its concentration was very low. Catechin also had a strong antioxidant capacity, which was positively correlated with its concentration. This indicates that the antioxidant activity of Msalais is related to the number, type, and structure of polyphenols.


Assuntos
Catequina , Vinho , Antioxidantes/farmacologia , Antioxidantes/análise , Catequina/química , Vinho/análise , Fenóis/química , Polifenóis/análise , Flavonoides/análise
7.
J Cardiovasc Dev Dis ; 9(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36421937

RESUMO

Normal cardiac automaticity is dependent on the pacemaker cells of the sinoatrial node (SAN). Insufficient cardiac pacemaking leads to the development of sick sinus syndrome (SSS). Since currently available pharmaceutical drugs and implantable pacemakers are only partially effective in managing SSS, there is a critical need for developing targeted mechanism-based therapies to treat SSS. SAN-like pacemaker cells (SANLPCs) are difficult to regenerate in vivo or in vitro because the genes and signaling pathways that regulate SAN development and function have not been fully elucidated. The development of more effective treatments for SSS, including biological pacemakers, requires further understanding of these genes and signaling pathways. Compared with genetic models and bulk RNA sequencing, single-cell RNA sequencing (scRNA-seq) technology promises to advance our understanding of cellular phenotype heterogeneity and molecular regulation during SAN development. This review outlines the key transcriptional networks that control the structure, development, and function of the SAN, with particular attention to SAN markers and signaling pathways detected via scRNA-seq. This review offers insights into the process and transcriptional network of SAN morphogenesis at a single-cell level and discusses current challenges and potential future directions for generating SANLPCs for biological pacemakers.

9.
Stem Cell Res Ther ; 13(1): 158, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410454

RESUMO

BACKGROUND: Existing methods for in vitro differentiation of human pluripotent stem cells (hPSCs) into sinoatrial node-like cells (SANLCs) require complex and undefined medium constituents. This might hinder the elucidation of the molecular mechanisms involved in cardiac subtype specification and prevent translational application. In our study, we aimed to establish a chemically defined differentiation methods to generate SANLCs effectively and stably. METHODS: We induced human embryonic stem cells (hESCs)/induced PSCs (hiPSCs) to pan-cardiomyocytes by temporal modulation of the WNT/ß-catenin (WNT) signaling pathway with GSK3 inhibitor and WNT inhibitor. During cardiac mesoderm stage of the differentiation process, signaling of WNT, retinoid acid (RA), and fibroblast growth factor (FGF) was manipulated by three specific molecules. Moreover, metabolic selection was designed to improve the enrichment of SANLCs. Finally, RT-PCR, immunofluorescence, flow cytometry, and whole cell patch clamp were used to identify the SANLCs. RESULTS: WNT, RA, and FGF signaling promote the differentiation of hPSCs into SANLCs in a concentration- and time window-sensitive manner, respectively. Synergetic modulation of WNT, FGF, and RA signaling pathways enhance the pacemaker phenotype and improve the differentiation efficiency of SANLCs (up to 45%). Moreover, the purification based on lactate metabolism and glucose starvation further reached approximately 50% of SANLCs. Finally, the electrophysiological data demonstrate that cells differentiated with the proposed protocol produce a considerable number of SANLCs that display typical electrophysiological characteristics of pacemaker cells in vitro. CONCLUSION: We provide an optimized and chemically defined protocol to generate SANLCs by combined modulation of WNT, RA, and FGF signaling pathways and metabolic selection by lactate enrichment and glucose starvation. This chemically defined method for generating SANLCs might provide a platform for disease modeling, drug discovery, predictive toxicology, and biological pacemaker construction.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nó Sinoatrial , Diferenciação Celular , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/farmacologia , Glucose/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Ácido Láctico , Miócitos Cardíacos/metabolismo , Nó Sinoatrial/metabolismo , Via de Sinalização Wnt
10.
Artigo em Inglês | MEDLINE | ID: mdl-35971382

RESUMO

Objective: To observe the effect of berberine (BBR) on kidney cell pyroptosis in golden hamsters with diabetic nephropathy (DN) and to explore the molecular mechanism of its renal protection. Methods: Fifty clean-grade male golden hamsters were randomly divided into a control group (10) and a model building group (40). The DN model was established by high-sugar and high-fat feeding and injection of a small amount of STZ. After successful establishment of the model, they were randomly divided into a model group, western medicine group, and berberine high- and low-dose groups. The western medicine group was given irbesartan 13.5 mg/kg, and the berberine high- and low-dose groups were given BBR 200 mg/kg and 100 mg/kg, respectively, for 8 consecutive weeks. An automatic biochemical analyser was used to measure blood glucose, blood lipids, kidney function, MDA, and other indicators; radioimmunoassay was used to assess serum insulin; enzyme-linked immunosorbent assay (ELISA) was used to quantify IL-1ß, IL-6, IL-18, TNF-α; HE, PAS, and Masson staining were used to observe kidney pathological tissue morphology; western blot and real-time fluorescent quantitative PCR were used to assess protein and mRNA expression of molecules, such as Nrf2, NLRP3, Caspase-1, and GSDMD; and TUNEL staining was used to detect DNA damage. SPSS statistical software was used for the data analysis. Results: The kidney tissues of golden hamsters in the control group were normal; Nrf2 was highly expressed, serum MDA level was low, NLRP3 expression in kidney tissue was not obvious, Caspase-1 and GSDMD were weakly expressed, and only a few TUNEL-positive cells were observed. Compared with the control group, the golden hamsters in the model group had obvious renal pathological damage; blood glucose, blood lipids, renal function-related indexes, insulin, and inflammatory factors IL-1ß, IL-6, IL-18, and TNF-α were increased (P < 0.05); NLRP3, Caspase-1, and GSDMD expression was increased; Nrf2 expression was decreased; MDA level was increased (P < 0.05); and the number of TUNEL-positive cells was increased. Compared with the model group, the pathological morphology of the kidney tissue of golden hamsters in the three treatment groups was significantly improved; blood glucose, blood lipids, renal function, and the expression of inflammatory factors IL-1ß and IL-6 were reduced (P < 0.05); NLRP3, Caspase-1, GSDMD, and other molecular proteins and mRNA expression were decreased; Nrf2 expression was increased; MDA level was decreased (P < 0.05); and the number of TUNEL-positive cells was decreased. Conclusion: DN golden hamster kidney NLRP3-Caspase-1-GSDMD signalling was enhanced. BBR can reduce oxidative stress damage by regulating antioxidative Nrf2 and then regulating NLRP3-Caspase-1-GSDMD signalling to inhibit pyroptosis, antagonizing DN inflammation-induced damage.

11.
Acta Pharmacol Sin ; 42(9): 1401-1408, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33277592

RESUMO

We previously reported that pseudoginsenoside-F11 (PF11), an ocotillol-type saponin, significantly ameliorated Alzheimer's disease (AD)-associated cognitive defects in APP/PS1 and SAMP8 mice by inhibiting Aß aggregation and tau hyperphosphorylation, suggesting a potential therapeutic effect of PF11 in the treatment of AD. In the present study we further evaluated the therapeutic effects of PF11 on relieving cognitive impairment in a rat model of sporadic AD (SAD). SAD was induced in rats by bilateral icv infusion of streptozotocin (STZ, 3 mg/kg). The rats were treated with PF11 (2, 4, 8 mg·kg-1·d-1, ig) or a positive control drug donepezil (5 mg·kg-1·d-1, ig) for 4 weeks. Their cognitive function was assessed in the nest building, Y-maze, and Morris water maze tests. We showed that STZ icv infusion significantly affected the cognitive function, tau phosphorylation, and insulin signaling pathway in the hippocampus. Furthermore, STZ icv infusion resulted in significant upregulation of the calpain I/cyclin-dependent protein kinase 5 (CDK5) signaling pathway in the hippocampus. Oral administration of PF11 dose-dependently ameliorated STZ-induced learning and memory defects. In addition, PF11 treatment markedly reduced the neuronal loss, protected the synapse structure, and modulated STZ-induced expression of tau phosphorylation by regulating the insulin signaling pathway and calpain I/CDK5 signaling pathway in the hippocampus. Donepezil treatment exerted similar beneficial effects in STZ-infused rats as the high dose of PF11 did. This study highlights the excellent therapeutic potential of PF11 in managing AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Ginsenosídeos/farmacologia , Proteínas tau/metabolismo , Doença de Alzheimer/induzido quimicamente , Animais , Calpaína/metabolismo , Pareamento Cromossômico , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/ultraestrutura , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Estreptozocina
12.
Thromb Res ; 196: 500-509, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33091704

RESUMO

Platelets play such an important role in the process of thrombosis that patients with thrombocytopenia generally have an increased risk of bleeding. However, abnormal thrombotic events can sometimes occur in patients with thrombocytopenia, which is unusual and inexplicable. The treatments for thrombocytopenia and thromboembolism are usually contradictory. This review introduces the mechanisms of thromboembolism in patients with different types of thrombocytopenia and outlines treatment recommendations for the prevention and treatment of thrombosis. According to the cause of thrombocytopenia, this article addresses four etiologies, including inherited thrombocytopenia (Myh9-related disease, ANKRD26-associated thrombocytopenia, Glanzmann thrombasthenia, Bernard-Soulier syndrome), thrombotic microangiopathy (thrombotic thrombocytopenic purpura, atypical hemolytic uremic syndrome, hemolytic uremic syndrome, Hemolysis Elevated Liver enzymes and Low Platelets syndrome, disseminated intravascular coagulation), autoimmune-related thrombocytopenia (immune thrombocytopenic purpura, antiphospholipid syndrome, systemic lupus erythematosus), and acquired thrombocytopenia (Infection-induced thrombocytopenia and drug-induced thrombocytopenia, heparin-induced thrombocytopenia). We hope to provide more evidence for clinical applications and future research.


Assuntos
Coagulação Intravascular Disseminada , Púrpura Trombocitopênica Idiopática , Púrpura Trombocitopênica Trombótica , Tromboembolia , Microangiopatias Trombóticas , Humanos , Tromboembolia/complicações
13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 34(10): 1313-1321, 2020 Oct 15.
Artigo em Chinês | MEDLINE | ID: mdl-33063499

RESUMO

OBJECTIVE: To explore the role of joint regulation of Wnt and bone morphogenetic protein (BMP) signaling pathways in the differentiation of human induced pluripotent stem cells (hiPSCs) into cardiomyocytes. METHODS: HiPSCs were cultured and observed under inverted phase contrast microscope. Immunofluorescence staining was used to observe the expressions of hiPSCs pluripotent markers (OCT3/4, NANOG, and TRA-1-60). HiPSCs were passaged which were taken for subsequent experiments within the 35th passage. When the fusion degree of hiPSCs was close to 100%, the CHIR99021 (Wnt pathway activator) was added on the 0th day of differentiation. Different concentrations of IWP4 (inhibitor of Wnt production) were added on the 3rd day of differentiation, and the best concentration of IWP4 was added at different time points. The optimal concentration and the best effective period of IWP4 were obtained by detecting the expression of troponin T (TNNT2) mRNA by real-time fluorescence quantitative PCR. Then, on the basis of adding CHIR99021 and IWP4, different concentrations of BMP-4 were added on the 5th day of differentiation, and the best concentration of BMP-4 was added at different time points. The optimal concentration and best effective period of BMP-4 were obtained by detecting the expression of TNNT2 mRNA. Finally, hiPSCs were divided into three groups: Wnt group, BMP group, and Wnt+BMP group. On the basis of adding CHIR99021 on the 0th day of differentiation, IWP4, BMP-4, and IWP4+BMP-4 were added into Wnt group, BMP group, and Wnt+BMP group respectively according to the screening results. Cells were collected on the 7th and the 15th days of differentiation. The expressions of myocardial precursor cell markers [ISL LIM homeobox 1 (ISL1), NK2 homeobox 5 (NKX2-5)] and cardiomyocyte specific markers [myocyte enhancer factor 2C (MEF2C), myosin light chain 2 (MYL2), MYL7, and TNNT2] were detected by real-time fluorescent quantitative PCR. Cells were collected on the 28th day of differentiation, and the expression of cardiac troponin T (cTnT) was detected by flow cytometry and immunofluorescence staining. RESULTS: The results of cell mophology and immunoflurescence staining showed that the OCT3/4, NANOG, and TRA-1-60 were highly expressed in hiPSCs, which suggested that hiPSCs had characteristics of pluripotency. The optimal concentration of IWP4 was 10.0 µmol/L ( P<0.05) and the best effective period was the 3rd day ( P<0.05) in inducing hiPSCs to differentiate into cardiomyocytes. The optimal concentration of BMP-4 was 20.0 ng/mL ( P<0.05) and the best effective period was the 3rd day ( P<0.05). The relative expressions of ISL1, NKX2-5, MEF2C, MYL2, MYL7, and TNNT2 mRNAs, the positive expression ratio of cTnT detected by flow cytometry, and sarcomere structure detected by immunofluorescence staining of Wnt+BMP group were superior to those of Wnt group ( P<0.05). CONCLUSION: Joint regulation of Wnt and BMP signaling pathways can improve the differentiation efficiency of hiPSCs into cardiomyocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Diferenciação Celular , Regulação da Expressão Gênica , Humanos , Transdução de Sinais
14.
Echocardiography ; 37(11): 1851-1854, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32989811

RESUMO

Aorto-cardiac fistula is a rare but potentially life-threatening condition. We herein report a rare case of chronic aorto-right ventricular fistula formation secondary to a stab penetrating injury to the heart and aorta occurred 15 years ago. The aorto-right ventricular fistula was not found until 15 years after the incident. The fistula had been repaired successfully to prevent further deterioration of cardiac function. Here, we report the clinical presentation, diagnosis and treatment strategies of the aorto-right ventricular fistula, and discuss the possible etiology of the development of the fistula after the penetrating injury.


Assuntos
Fístula , Traumatismos Cardíacos , Fístula Vascular , Ferimentos Perfurantes , Aorta/diagnóstico por imagem , Aorta/lesões , Aorta/cirurgia , Fístula/diagnóstico por imagem , Fístula/etiologia , Fístula/cirurgia , Traumatismos Cardíacos/diagnóstico por imagem , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/cirurgia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/lesões , Ventrículos do Coração/cirurgia , Humanos , Fístula Vascular/diagnóstico por imagem , Fístula Vascular/etiologia , Fístula Vascular/cirurgia , Ferimentos Perfurantes/complicações , Ferimentos Perfurantes/diagnóstico por imagem , Ferimentos Perfurantes/cirurgia
15.
Stem Cell Res Ther ; 11(1): 284, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678003

RESUMO

BACKGROUND: Biological pacemakers derived from pluripotent stem cell (PSC) have been considered as a potential therapeutic surrogate for sick sinus syndrome. So it is essential to develop highly efficient strategies for enrichment of sinoatrial node-like cells (SANLCs) as seed cells for biological pacemakers. It has been reported that BMP, FGF, and RA signaling pathways are involved in specification of different cardiomyocyte subtypes, pacemaker, ventricular, and atrial cells. We aimed to investigate whether combined modulation of BMP, FGF, and RA signaling pathways could enrich the differentiation of SANLC from human pluripotent stem cell (hiPSC). METHODS: During the differentiation process from human induced pluripotent stem cell to cardiomyocyte through small molecule-based temporal modulation of the Wnt signaling pathway, signaling of BMP, FGF, and RA was manipulated at cardiac mesoderm stage. qRT-PCR, immunofluorescence, flow cytometry, and whole cell patch clamp were used to identify the SANLC. RESULTS: qRT-PCR results showed that manipulating each one of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and retinoid acid (RA) signaling was effective for the upregulation of SANLC markers. Moreover, combined modulation of these three pathways displayed the best efficiency for the expression of SANLC markers, which was further confirmed at protein level using immunofluorescence and flow cytometry. Finally, the electrophysiological characteristics of upregulated SANLC were verified by patch clamp method. CONCLUSION: An efficient transgene-independent differentiation protocol for generating SANLC from hiPSC was developed, in which combined modulating BMP, FGF, and RA signaling at cardiac mesoderm stage generates SANLC at high efficiency. This may serve as a potential approach for biological pacemaker construction.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteínas Morfogenéticas Ósseas/genética , Diferenciação Celular , Fatores de Crescimento de Fibroblastos/genética , Humanos , Retinoides , Nó Sinoatrial
16.
Zookeys ; 931: 35-48, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32405240

RESUMO

Lithobius (Ezembius) varioporussp. nov. (Lithobiomorpha, Lithobiidae), recently discovered from Longquanguan Town, Fuping County, Baoding City, Hebei Province, China, is described. Morphologically it resembles to Lithobius (Ezembius) laevidentata Pei, Ma, Hou, Zhu & Gai, 2015 from the Xinjiang Autonomous Region, but can be easily distinguished from the latter by the Tömösváry's organ, slightly smaller than the adjoining ocelli, no secondary sexual modifications on male tibia 14 and 15, posterior accessory spine of legs 14 and 15 present and the number of coxal pores varying considerably from three to eight. The main morphological characters of the known Chinese species of the subgenusEzembius Chamberlin, 1919 based on adult specimens are presented.

17.
Zhongguo Zhong Yao Za Zhi ; 45(23): 5694-5700, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496109

RESUMO

To investigate the effects of different habitat processing methods of Salviae Miltiorrhizae Radix et Rhizoma on acute myocardial ischemia induced by pituitrin in rats. In this experiment, the tail vein injection of pituitrin was used to induce acute myocardial ischemia in rats. Electrocardiograph(ECG) heart rate and ΔST changes were recorded, and the levels of creatine kinase isoenzyme(CK-MB), lactate dehydrogenase(LDH), superoxide dismutase(SOD) and malondialdehyde(MDA) in serum of rats were detected to comprehensively evaluate the effects of six processing methods of Salviae Miltiorrhizae Radix et Rhizoma on serum biochemical indexes of rats with acute myocardial injury. The ECG results showed that the Salviae Miltiorrhizae Radix et Rhizoma dried in a drying oven had a good effect on the improvement of heart rate and ΔST of electrocardiogram after ischemia, and all the other groups had some protective effects to different degrees. The results of biochemical indexes in serum of each group after ischemia showed that the activity of CK-MB decreased most significantly in Salviae Miltiorrhizae Radix et Rhizoma high-dose group with drying in a drying oven after sweating and losing weight in a drying oven, high-dose group with drying in the shade and low-dose group with drying in the shade. The activity of LDH decreased most significantly in Salviae Miltiorrhizae Radix et Rhizoma high-dose group with drying in the shade and low-dose group of drying in the shade. The activity of SOD increased most significantly in Salviae Miltiorrhizae Radix et Rhizoma low-dose group with drying in sun, low-dose group with drying in sun after sweating and losing weight in sun, and low-dose group with drying in a drying oven. The activity of MDA decreased most significantly in Salviae Miltiorrhizae Radix et Rhizoma low-dose group with drying in sun. The comprehensive scoring results showed that the highest score was obtained in Salviae Miltiorrhizae Radix et Rhizoma high-dose group with drying in the shade while the scores of other treatment groups were higher than that of the model group. It could be seen that the Salviae Miltiorrhizae Radix et Rhizoma dried in a drying oven had a good improvement effect on electrocardiograph indexes after acute myocardial injury, the Salviae Miltiorrhizae Radix et Rhizoma dried in the shade had a good improvement effect on serum myocardial enzymes after acute myocardial injury, and the other processing methods had a certain protective effect on myocardial injury. The six processing methods evaluated by pharmacodynamics showed that the Salviae Miltiorrhizae Radix et Rhizoma dried in the shade and dried in a drying oven had good efficacy.


Assuntos
Medicamentos de Ervas Chinesas , Isquemia Miocárdica , Salvia miltiorrhiza , Animais , Ecossistema , Ratos , Rizoma
18.
Brain Res ; 1722: 146344, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31344367

RESUMO

Intracerebroventricular (icv) streptozotocin (STZ) injection decreases cerebral insulin signal pathway function and produces multiple effects that resemble the molecular, pathological, and behavioural features of Sporadic Alzheimer's disease (SAD). We previously reported that yonkenafil (yonk), the analogue of sildenafil and a novel PDE5 inhibitor exerts an anti-amyloidogenesis effect by regulating the Aß level and inhibiting the expression of ß-amyloid precursor protein in the APP/PS1 transgenic mice model. In this study, the effects of yonk on cognitive behaviors as well as the pathological features in streptozotocin-induced SAD rat model were investigated. The results demonstrated that administration of yonk at doses of 3 and 10 mg/kg for three weeks significantly improved cognitive deficits, attenuated STZ-induced neuronal death, inhibited the over-activation of microglia and astrocytes and the levels of pro-inflammatory markers, as well as decreased PDE5 protein expression in the hippocampus. Furthermore, yonk (3 mg/kg) notably prevented changes in tau hyperphosphorylation, decreased IRS-1and JNK phosphorylation and increased the GSK3ß (ser9) phosphorylation induced by STZ. In summary, these data suggested that yonk significantly reversed STZ-induced memory deficits by inhibiting the over-activation of microglia and astrocytes, as well as ameliorated the levels of pro-inflammatory makers and tau hyperphosphorylation through regulating GSK3ß signalling pathway.


Assuntos
Encefalite/induzido quimicamente , Encefalite/metabolismo , Inibidores da Fosfodiesterase 5/administração & dosagem , Pirimidinonas/administração & dosagem , Pirróis/administração & dosagem , Estreptozocina/administração & dosagem , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Animais , Modelos Animais de Doenças , Insulina/metabolismo , Masculino , Fosforilação , Ratos Wistar
19.
Gene ; 714: 143996, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348980

RESUMO

The uniquely human α7-nAChR gene (CHRFAM7A) is evolved from the fusion of two partially duplicated genes, FAM7 and α7-nAChR gene (CHRNA7), and is inserted on same chromosome 15, 5' end of the CHRNA7 gene. Transcription of CHRFAM7A gene produces a 1256-bp open reading frame encoding dup-α7-nAChR, where a 27-aminoacid residues from FAM7 replaced the 146-aminoacid residues of the N-terminal extracellular ligand binding domain of α7-nAChR. In vitro, dup-α7-nAChR has been shown to form hetero-pentamer with α7-nAChR and dominant-negatively regulates the channel functions of α7-nAChR. However, the contribution of CHRFAM7A gene to the biology of α7-nAChR in the brain in vivo remains largely a matter of conjecture. CHRFAM7A transgenic mouse was created and differentially expressed proteins were profiled from the whole brain using iTRAQ-2D-LC-MS/MS proteomic technology. Proteins with a fold change of ≥1.2 or ≤0.83 and p < 0.05 were considered to be significant. Bioinformatics analysis showed that over-expression of the CHRFAM7A gene significantly modulated the proteins commonly involved in the signaling pathways of α7-nAChR-mediated neuropsychiatric disorders including Parkinson's disease, Alzheimer's disease, Huntington's disease, and alcoholism, suggesting that the CHRFAM7A gene contributes to the pathogenesis of neuropsychiatric disorders mostly likely through fine-tuning the functions of α7-nAChR in the brain.


Assuntos
Camundongos Transgênicos/genética , Receptor Nicotínico de Acetilcolina alfa7/genética , Animais , Encéfalo/metabolismo , Cromatografia Líquida/métodos , Cromossomos Humanos Par 15/genética , Perfilação da Expressão Gênica/métodos , Genes Duplicados/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica/métodos , Transdução de Sinais/genética , Espectrometria de Massas em Tandem/métodos
20.
Mol Med Rep ; 19(5): 4119-4128, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30942456

RESUMO

The Na+/K+­ATPase inhibitor cinobufagin exhibits numerous anticancer effects on hepatocellular carcinoma (HCC) cells expressing wild­type p53 via inhibition of aurora kinase A (AURKA) and activation of p53 signaling. However, the effects of cinobufagin on HCC cells expressing mutant p53 remain unclear. In the present study, the anticancer effects of cinobufagin were investigated on HCC Huh­7 cells with mutant p53, and the effects of AURKA overexpression or inhibition on the anticancer effects of cinobufagin were analyzed. Viability, cell cycle progression and apoptosis of cells were determined using an MTT assay, flow cytometry and Hoechst 33342 staining, respectively. The expression levels of p53 and p73 signaling­associated proteins were investigated via western blot analysis. The results demonstrated that the expression levels of AURKA, B­cell lymphoma 2 (Bcl­2), cyclin­dependent kinase 1, cyclin B1, proliferating cell nuclear antigen and heterogeneous nuclear ribonucleoprotein K, as well as the phosphorylation of p53 and mouse double minute 2 homolog, were significantly decreased in Huh­7 cells treated with 5 µmol/l cinobufagin for 24 h. Conversely, the expression levels of Bcl­2­associated X protein, p21, p53 upregulated modulator of apoptosis and phorbol­12­myristate­13­acetate­induced protein 1, were significantly increased by cinobufagin treatment. Overexpression or inhibition of AURKA suppressed or promoted the anticancer effects of cinobufagin on Huh­7 cells, respectively. These results indicated that cinobufagin may induce anticancer effects on Huh­7 cells via the inhibition of AURKA and p53 signaling, and via the activation of p73 signaling, in an AURKA­dependent manner.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Bufanolídeos/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Tumoral p73/metabolismo , Apoptose/efeitos dos fármacos , Aurora Quinase A/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...